3. V. Ya. Shkadov, "Single waves in a layer of viscous liquid," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1977).
4. S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev, "Waves at the surface of a vertically down-flowing film of liquid," Preprint Inst. Tekh. Fiz., Sib. Otd., Akad. Nauk SSSR, No. 36-79, Novosibirsk (1979).

UNSTEADY ROTATION OF A CYLINDER IN A VISCOUS FLUID

V. L. Sennitskii

UDC 532.516

The flow of a viscous fluid around a cylinder set in rotational motion at constant angular velocity was investigated in [1,2]. The present paper deals with the problem of rotation, in a viscous incompressible fluid, of a round cylinder, on unit length of which, beginning at time $t=0$, there acts a constant moment of external forces M. The fluid flow is assumed to be plane. At $t \leqslant 0$ the cylinder and fluid are at rest.

We select cylindrical coordinates r, θ, and z in such a way that the z axis is directed along the cylinder axis. We assume that the flow velocity V is independent of θ. Then, as is easily verified, the r component of the vector V is zero, and the considered problem reduces to solution of the equations

$$
\begin{gather*}
\frac{\partial V_{\theta}}{\partial t}=v\left(\frac{\partial^{2} V_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial V_{\theta}}{\partial r}-\frac{V_{\theta}}{r^{2}}\right) ; \tag{1}\\
I d \Omega / d t=M+L \tag{2}
\end{gather*}
$$

with the following initial and boundary conditions:

$$
\begin{gather*}
V_{\theta}=0 \text { when } t=0, r \geqslant a ; \tag{3}\\
V_{\theta}=a \Omega \text { when } r=a ; \tag{4}\\
V_{\theta} \rightarrow 0 \text { when } r \rightarrow \infty, \tag{5}
\end{gather*}
$$

where V_{θ} is the θ component of vector $\mathrm{V} ; \mathrm{I}$ is the moment of inertia of unit length of the cylinder; Ω is the angular velocity of the cylinder; a is the radius of the cylinder; ν is the kinematic viscosity; $L=2 \pi \mu a^{2}\left(\partial V_{\theta} /\left.\partial r\right|_{r=a}-\Omega\right)$ is the moment of viscous forces acting on unit length of the cylinder due to the fluid; $\mu=\rho \nu ; \rho$ is the density of the fluid.

To solve the posed problem we use an operational method. Converting to images in (1), (2), (4), and (5), we obtain
where

$$
\begin{gather*}
\frac{\partial^{2} V_{\theta}^{*}}{\partial r^{2}}+\frac{1}{r} \frac{\partial V_{\theta}^{*}}{\partial r}-\left(\frac{1}{r^{2}}+\frac{p}{v}\right) V_{\theta}^{*}=0 ; \tag{6}\\
I p \Omega^{*}=M^{*}+L^{*} ; \tag{7}\\
V_{\theta}^{*}=a \Omega^{*} \quad \text { when } r=a ; \tag{8}\\
V_{\theta}^{*} \rightarrow 0 \quad \text { when } r \rightarrow \infty, \tag{9}\\
V_{\theta}^{*}=\int_{0}^{\infty} \mathrm{e}^{-p t} V_{\theta} d t ; \quad \Omega^{*}=\int_{0}^{\infty} e^{-p t} \Omega d t ; \\
M^{*}=\frac{M r}{p}, \quad L^{*}=2 \pi \mu a^{2}\left(\left.\frac{\partial V_{\theta}^{*}}{\partial r}\right|_{r=a}-\Omega^{*}\right) ; \tag{10}
\end{gather*}
$$

p is a complex variable.
The solution of Eq. (6) satisfying conditions (8), (9) has the form

$$
\begin{equation*}
V_{\theta}^{*}=a \Omega^{*} \frac{K_{1}\left(r \frac{p^{1 / 2}}{v^{1 / 2}}\right)}{K_{1}\left(a \frac{p^{1 / 2}}{v^{1 / 2}}\right)}, \tag{11}
\end{equation*}
$$

where K_{I} is a MacDonald function. Using (7), (10), (11), we obtain

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 66-69, May-June, 1980. Original article submitted June 12, 1979.

Fig. 1

Fig. 2

$$
\Omega^{*}=\frac{M}{p \Phi} K_{1}\left(a \frac{p^{1 / 2}}{\nu^{1 / 2}}\right)
$$

where

$$
\Phi=2 \pi \mu a^{2}\left\{\left(1+\frac{I p}{2 \pi \mu a^{2}}\right) K_{1}\left(a \frac{p^{1 / 2}}{v^{1 / 2}}\right)-\left.a \frac{\partial K_{1}\left(r \frac{p^{1 / 2}}{v^{1 / 2}}\right)}{\partial r}\right|_{r=a}\right\}
$$

Thus, for V_{θ} we have the following expression:

$$
V_{\theta}=\frac{a M}{2 \pi i} \int_{a-i \infty}^{\alpha+i \infty} e^{p t} \frac{K_{1}\left(r \frac{p^{1 / 2}}{v^{1 / 2}}\right)}{p \Phi} d p
$$

where the integral is taken over the straight line $\operatorname{Re} p=\alpha ; \alpha>0$.
The function Φ is nonzero over the entire complex plane of the variable p with a branch cut along the negative part of the real axis [3]. According to the Cauchy theorem

$$
\begin{gather*}
\int_{A B C A} \frac{K_{1}\left(r \frac{p^{1 / 2}}{v^{1 / 2}}\right)}{p \Phi} d p=0 ; \tag{12}\\
\int_{A C D E F G A} e^{p t} \frac{K_{1}\left(r \frac{p^{1 / 2}}{v^{1 / 2}}\right)}{p \Phi} d p=0, \tag{13}
\end{gather*}
$$

where the integration is taken over the contours illustrated in Fig. 1. Converting in (12) to the limit $\mathrm{R}_{1} \rightarrow \infty$, and in (13) to $\mathrm{R}_{1} \rightarrow \infty, \mathrm{R}_{2} \rightarrow 0$, we obtain

$$
\begin{gather*}
=\int_{\alpha-i \infty}^{\alpha+i \infty} \frac{K_{1}\left(r \frac{p^{1 / 2}}{v^{1 / 2}}\right)}{p \Phi} d p=0 \tag{14}\\
V_{\theta}=\frac{M}{4 \pi \mu r}\left\{1+\frac{4 x s}{\pi} \int_{0}^{\infty} \frac{e^{-\tau_{5}^{2}} p}{\xi^{2} Q} d \xi\right\} \tag{15}
\end{gather*}
$$

where

$$
\begin{aligned}
& p= N_{1}(s \xi)\left[\xi J_{1}(\xi)-\chi J_{2}(\xi)\right]-J_{1}(\xi \xi)\left[\xi N_{1}(\xi)-x N_{2}(\xi)\right] \\
& Q=\left[\xi J_{1}(\xi)-\chi J_{2}(\xi)\right]^{2}+\left[\xi N_{1}(\xi)-\chi N_{2}(\xi)\right]^{2}
\end{aligned}
$$

$x=2 \pi \rho a^{4} / I ; s=r / a ; \tau=v t / a^{2} ; J_{1}, J_{2}, N_{1}, N_{2}$ are Bessel and Neumann functions. When $t=0$ expression (15) for V_{θ} becomes zero [this follows from (14)] in accordance with condition (3).

The angular velocity of the cylinder is

$$
\begin{equation*}
\Omega=\frac{M}{4 \pi \mu a^{2}}\left\{1-\frac{8 x^{2}}{\pi^{2}} \int_{0}^{\infty} \frac{e^{-\tau \xi^{2}}}{\xi^{3} Q} d \xi\right\} \tag{16}
\end{equation*}
$$

Using the known expansions of the Bessel and Neumann functions in series [4], we can obtain from (16) the following asymptotic relations:

$$
\omega \sim 1-1 / 4 \tau \text { for } \tau \rightarrow \infty, \omega \sim f(\varkappa) \tau \text { for } \tau \rightarrow 0
$$

where

$$
\omega=\frac{4 \pi \mu a^{2} \Omega}{M} ; \quad f(x)=\frac{8 x^{2}}{\pi^{2}} \int_{0}^{\infty} \frac{d_{5}^{\xi}}{\xi Q} .
$$

According to the Cauchy theorem

$$
\begin{equation*}
\int_{A B C D E F G A} \frac{K_{1}\left(a \frac{p^{1 / 2}}{v^{1 / 2}}\right)}{\Phi} d p=0 . \tag{17}
\end{equation*}
$$

Converting in (17) to the limit $\mathrm{R}_{1} \rightarrow \infty, \mathrm{R}_{2} \rightarrow 0$, we obtain

$$
\int_{0}^{\infty} \frac{d \xi}{\xi Q}=\frac{\pi^{2}}{4 x} .
$$

Thus,

$$
0 \sim 2^{x} \tau \text { when } \tau \rightarrow 0
$$

Figure 2 shows ω as a function of τ for $\chi=0.5,1,1.5$ (points 1-3). The numbers $4-7$ denote the lines $\omega=\tau$, $\omega=2 \tau, \omega=3 \tau, \omega=1-1 / 4 \tau$.

I express my thanks to L. Ya. Rybak for performing the numerical calculations from Eq. (16).

LITERATURE CITED

1. N. A. Slezkin, Dynamics of a Viscous Incompressible Fluid [in Russian], GITTL, Moscow (1955).
2. D. D. Mallick, "Nonuniform rotation of an infinite circular cylinder in an infinite viscous liquid," Z. Angew. Math. Mech., ZAMM, 37, No. 9/10 (1957).
3. A. Erdélyi and W. O. Kermack, "Note on the equation $f(z) K_{n}^{\prime}(z)-g(z) K_{n}(z)=0$," Proc. Camb. Phil. Soc., 41,74 (1945).
4. B. G. Korenev, Introduction to the Theory of Bessel Functions [in Russian], Nauka, Moscow (1971).
